Cannabis Cultivation, Energy Consumption and Sustainability 101: Optimizing Design of Cultivation Facilities

Jacob Policzer - The Cannabis Conservancy, Sun+Earth Certified

Presentation Overview

- Cultivation Overview
- Cannabis Biology
- Cultivation Methodology
- Indoor
- Greenhouse
- Sustainable Design

Direct and indirect drivers of energy use and greenhouse-gas emissions from the cannabis industry

	Inputs	 Energy (embodied) Industrial CO2* Water production and supply Soil, amendments, fertilizers Artificial growing media Pesticides, herbicides, fungicides rodenticides Plastics (bagging, mulch, greenhouse sheeting, containers, irrigation, etc.) 			
	Cultivation	 Outdoor Small structure (windowless)* Large structure (windowless) Greenhouse Energy: lighting, cooling, heating, ventilation, odor control, CO2 generator, dehumidification, water heat, pumping, IT, plug loads* 			
	Processing	 Flower drying* / freezing Energy for producing extracts; solvents (butane, propane, ethanol, isopropyl alcohol) Cooking/baking Packaging Testing labs 			
	Waste	 Failed/interdicted crops Material not passing inspection Single-use soil or artificial growing media Plastics Hydroponic water effluent to waste-treatment plant Biomass residues Transpiration water recovery 			
X		Mills and Zeramby 2021. Energy	/ Use by the Indoor Cannabis Indus	try	

Main Cultivation Factors

Energy Use in Cultivation

Grower Considerations

- Cost
- Reliability
- Consistency
- Ease of Use
- Redundancy

Cannabis Life Cycle

Day 30

Day 90

Propagation - Clones

Vegetative Stage

Flowering Stage

Life cycle bud week 7

Life cycle bud week 8

Life cycle bud week 9

Flowering

Ready For Harvest

Amber Trichomes

Harvesting

Curing and Storage

Why?

- Preservation
- Increase potency
- Preserve Terpenes
- Breakdown sugars, minerals
- How:
- 60-70F
- 45-55% Humidity

Strain Differences

Indica vs Sativa

	Indica	Sativa
Origin	Central Asia	Equatorial
Flowering Time	45-65 Days	60-90 Days
Leaf Structure	Thick	Thin
Height	Short	Tall
Energy Needs	66 W per sq. ft.	45 W per sq. ft.

Autoflower Strains

Grow Methodology

	Clone	Vegetative	Flower
Light Hours	18-24 hours	18-24 hours	12 hours
Light Type	T-5 / LED	MH / LED	HPS / LED
Wattage	236 / 330	1000 / 330-660	1000 / 660-850
Watts/Sq. Ft (Lighting)	15-50	20-63	20-63
Length in Phase	1-3 weeks	2-7 weeks	8-10 weeks
Temperature	70-85 F	70-85 F	70-85 F
Relative Humidity	70-80%	60-70%	40-60%

Equipment By Grow Method

Indoor Cultivation

- Illicit Market Legacy
- Climate Control
- Pest Pressure Control
- Consumer Preference

Indoor Grow Energy Usage

•Oregon Averages*

- HVAC/Dehumidification: 40 50%
- Lighting: 35 40%

Colorado Averages

- Lighting: ~60%
- HVAC: ~30%
- Dehumidification: ~10%

Figure 1 – Energy Use Breakdown for a Typical Indoor Cannabis Grow⁹

Kowley, Neil. 2017. A Budding Opportunity: Energy Efficiency best practices for cannabis grow operations. Southwest Energy Efficiency Project.

*Oregon Energy Trust

2018 Energy Benchmarks

i key benchmarks

Cultivation Type	Electricity Productivity (grams/kWh)	Electricity Intensity (kWh/sq.ft.)	Production Intensity (grams/sq.ft.)	Electricity Cost (\$/gram)	Carbon Intensity (IbsCO ₂ e/gram)
Indoor	0.8	262	174	0.24	1.24
Greenhouse / Hybrid / Mixed Light	1.1	134	48	0.21	0.72
Outdoor	14.4	2	29	0.01	0.05

i ELECTRICITY PRODUCTIVITY (GRAMS/kWh)

(i) ELECTRICITY INTENSITY (kWh/SQFT)

2018 The Cannabis Energy Report

Lighting Considerations

- Equipment Selection
 - Photon Efficiency Energy into PAR
 - Availability
- Design
 - Light Distribution
 - Light Intensity
 - Uniformity
- Facility
 - Space
 - Power Capacity
 - Cooling Capacity
 - Finances (Capital)

Key Concepts

- Sensible Heat Temperature (Lights)
- Latent Heat Load Energy and Heat stored in Humidity (evapotranspiration)
- Poorly Designed Mechanical System increase energy use 50%

New Technology

Roof Top Units (RTU)

• Hot-Gas Reheat Forced-air System

Water Chilled Units

- Fan speed and water temp control for more efficient latent heat removal
- Water-side Economizing

High-Efficiency Split Ductless A/C-Heat Pump

- Less Fan Energy
- Very Efficient in Heating mode

Dehumidification

- Plate Air to Air Heat Exchangers
- Hybrid Desiccant and Evaporative System

Greenhouses Passive

Greenhouses

Sealed – Climate Controlled

Light Deprivation System

Indoor vs Greenhouse Lighting

Indoor

Greenhouse

02:30 PM

Peak Interval

Outdoor

Regenerative Outdoor

Environmental Set Points

- VPD
- Root Zone Temperature
- DLI
- Air Movement

Sustainable Design Trends

Focus on:

- Purpose Built Buildings
- Automation Climate Control
- Operational Practices
- Behavioral Change
- On-going Energy Monitoring
- Sustainability as a marketing tool

Strategic Energy Management

Policy & Implementation

- Energy Conservation
- Energy Use (SOPs)
- Training Program

Energy Metrics and Benchmarks

- Total Consumption
- Production Efficiency

Infrastructure

- Building Envelope
- Insulation

Energy Management

- Annual Energy Audit
- Equipment Policies and Procedures
- Automation
- Maintenance

Equipment Systems

- Temperature and Humidity Systems
- Lighting Systems
- Air Circulation

Additional Factors

- Fuel Consumption Behavior
- Alternative Energy
- Carbon Offset

Reducing Energy Usage By Annually Increasing Stringency

Utility Discussion

- Location
 - Clustered Urban Areas
 - Clustered by Zoning

- Client Needs
 - Utility Bill breakdown
 - Energy Audit
 - Power Upgrade Schedule
 - Rebate Guidance
- Solutions
 - Target Grower Organizations
 - Hold Public Meetings/Workshops
 - Agricultural Rates
 - Energy Offset Fund